A hybrid approach for feature subset selection using neural networks and ant colony optimization

نویسندگان

  • Rahul Karthik Sivagaminathan
  • Sreeram Ramakrishnan
چکیده

One of the significant research problems in multivariate analysis is the selection of a subset of input variables that can predict the desired output with an acceptable level of accuracy. This goal is attained through the elimination of the variables that produce noise or, are strictly correlated with other already selected variables. Feature subset selection (selection of the input variables) is important in correlation analysis and in the field of classification and modeling. This paper presents a hybrid method based on ant colony optimization and artificial neural networks (ANNs) to address feature selection. The proposed hybrid model is demonstrated using data sets from the domain of medical diagnosis, yielding promising results. 2006 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Estimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran

In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...

متن کامل

Selection of Most Responsible Genes for Cancer Disease from Large Attributed Dataset Using Hybrid Approach

High dimensionality has been a major problem for gene array-based cancer classification. Feature Selection (FS) is ordinarily used as a useful technique in order to reduce the dimension of the dataset. For that to get advantages from both methods of feature selection, Individual Feature Ranking (IFR) and Feature Subset Selection (FSS) are combined which is a hybrid approach. Information Gain fr...

متن کامل

HYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY

The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...

متن کامل

Ant Colony Optimization Based Feature Selection Method for QEEG Data Classification

OBJECTIVE Many applications such as biomedical signals require selecting a subset of the input features in order to represent the whole set of features. A feature selection algorithm has recently been proposed as a new approach for feature subset selection. METHODS Feature selection process using ant colony optimization (ACO) for 6 channel pre-treatment electroencephalogram (EEG) data from th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2007